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Abstract

Diffusion processes, and their discrete time counterparts, random walk models, have demonstrated an ability to account for a wide range of
findings from behavioural decision making for which the purely algebraic and deterministic models often used in economics and psychology
cannot account. Recent studies that record neural activations in non-human primates during perceptual decision making tasks have revealed that
neural firing rates closely mimic the accumulation of preference theorized by behaviourally-derived diffusion models of decision making.

This article bridges the expanse between the neurophysiological and behavioural decision making literatures specifically, decision field theory
[Busemeyer, J. R. & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment.
Psychological Review, 100, 432–459], a dynamic and stochastic random walk theory of decision making, is presented as a model positioned
between lower-level neural activation patterns and more complex notions of decision making found in psychology and economics. Potential
neural correlates of this model are proposed, and relevant competing models are also addressed.
c© 2006 Elsevier Ltd. All rights reserved.
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The decision processes of sensory-motor decisions are
beginning to be fairly well understood both at the behavioural
and neural levels. For the past ten years, neuroscientists have
been using multiple cell recording techniques to examine spike
activation patterns in rhesus monkeys during simple decision
making tasks (Britten, Shadlen, Newsome, & Movshon, 1993).
In a typical experiment, the monkeys are presented with a visual
motion detection task which requires them to make a saccadic
eye movement to a location indicated by a noisy visual display,
and they are rewarded with juice for correct responses. Neural
activity is recorded from either the middle temporal area (an
extrastriate visual area), lateral intraparietal cortex (which plays
a role in spatial attention), the frontal eye fields (FEF), or
superior colliculus (SC, regions involved in the planning and
implementation of eye movements, respectively).

The typical findings indicate that neural activation regarding
stimulus movement information is accumulated across time up
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to a threshold, and a behavioural response is made as soon as the
activation in the recorded area exceeds the threshold (see Gold
and Shadlen (2000), Mazurek, Roitman, Ditterich, and Shadlen
(2003), Ratcliff, Cherian, and Segraves (2003), Schall (2003),
Shadlen and Newsome (2001) for examples). Because areas
such as FEF and SC are thought to implement the behaviour
of interest (in this example, saccadic eye movements), a
conclusion that one can draw from these results is that the
neural areas responsible for planning or carrying out certain
actions are also responsible for deciding the action to carry out,
a decidedly embodied notion.

Mathematically, the spike activation pattern, as well as the
choice and response time distributions, can be well described
by what are known as diffusion models (see Smith and Ratcliff
(2004) for a summary). Diffusion models can be viewed as
stochastic recurrent neural network models, except that the
dynamics are approximated by linear systems. The linear
approximation is important for maintaining a mathematically
tractable analysis of systems perturbed by noisy inputs. In
addition to these neuroscience applications, diffusion models
(or their discrete time, random walk, analogues) have been

http://www.elsevier.com/locate/neunet
mailto:jbusemey@indiana.edu
http://dx.doi.org/10.1016/j.neunet.2006.05.043


1048 J.R. Busemeyer et al. / Neural Networks 19 (2006) 1047–1058
used by cognitive scientists to model performance in a variety
of tasks ranging from sensory detection (Smith, 1995), and
perceptual discrimination (Laming, 1968; Link & Heath, 1975;
Usher & McClelland, 2001), to memory recognition (Ratcliff,
1978), and categorization (Ashby, 2000; Nosofsky & Palmeri,
1997). Thus, diffusion models provide the potential to form
a theoretical bridge between neural models of sensory-motor
tasks and behavioural models of complex-cognitive tasks.

The purpose of this article is to review applications of
diffusion models to human decision making under risk with
conflicting objectives. Traditionally, the field of decision
making has been guided by algebraic utility theories such as the
classic expected utility model (von Neumann & Morgenstern,
1944) or more complex variants such as cumulative prospect
theory (Tversky & Kahneman, 1992). However, a number
of paradoxical findings have emerged in the field of human
decision making that are difficult to explain by traditional
utility theories. We show that diffusion models provide a cogent
explanation for these complex and puzzling behaviours. First,
we describe how diffusion models can be applied to risky
decisions with conflicting objectives; second, we explain some
important findings using this theory; and finally, we compare
this theory with some alternate competing neural network
models.

1. Risky decisions with multiple objectives

Consider the following type of risky decision with multiple
objectives. Suppose a commander is suddenly confronted by
an emergency situation, and must quickly choose one action
from a set of J actions, labelled here as {A1, . . . , A j , . . . , AJ }.
The payoff for each action depends on one of set of K
uncertain states of the world {X1, . . . , Xk, . . . , X K }. The
payoff produced by taking action j under state of the world k is
denoted x jk . Finally, each payoff can be described in terms of
multiple competing objectives (e.g. one objective is to achieve
the commander’s mission while another objective is to preserve
the commander’s resources).

According to the ‘rational’ model (Savage, 1954; von
Neumann & Morgenstern, 1944), the decision maker should
choose the course of action that maximizes expected utility:
EU (A j ) =

∑
k pk · u(x jk), where pk is the probability

of state Xk and u(x jk) is the utility of payoff x jk .
Psychological variants of expected utility theory modify the
classic model by replacing the objective probabilities with
subjective decision weights (e.g. Birnbaum, Coffey, Mellers,
and Weiss (1992), Tversky and Kahneman (1992)).

2. Decision field theory

An alternate approach towards explaining risky choice
behaviour involves the application of diffusion processes, via
decision field theory. We have applied diffusion models to
a broad range of results including findings from decision
making under uncertainty (Busemeyer & Townsend, 1993),
multi-attribute decisions (Diederich, 1997), multi-alternative
choices (Roe, Busemeyer, & Townsend, 2001) and multiple
measures of preference (Johnson & Busemeyer, 2005). The
basic assumptions of the model are summarized below.

2.1. Basic assumptions

Define P(t) as a J dimensional preference state vector,
and each coordinate, Pj (t), represents the preference state
for one of the J actions under consideration. The preference
states may range from positive (approach states) to negative
(avoidance states), and the magnitude of a preference state
represents the strength of the approach–avoidance tendency.
The initial state at the beginning of the decision process, P(0),
represents preferences before any information about the actions
is considered, such as memory from previous experience with
a decision problem (

∑
j Pj (0) = 0). For novel decisions, the

initial states are all set equal to zero (neutral), Pj (0) = 0 for
all j . The change in state across a small time increment h is
denoted by d P(t) = P(t) − P(t − h).

During deliberation the preference state vector evolves
according to the following linear stochastic difference equation
(t = n · h and n = 1, 2, . . .)

d P(t) = −h · 0 · P(t − h) + V (t) (1a)

or equivalently

P(t) = (I − h · 0) · P(t − h) + V (t)

= S · P(t − h) + V (t) (1b)

where S = (I − h · 0) is a J × J feedback matrix, V (t) is a J
dimensional stochastic input, and I is the identity matrix. The
solution to this linear stochastic difference equation equals

P(t) =

n−1∑
τ=0

Sτ V (t − τh) + Sn P(0). (2)

As h → 0, this system approximates an Ornstein–Uhlenbeck
diffusion process (see Busemeyer and Diederich (2002), Buse-
meyer and Townsend (1992)). If the feedback matrix is set to
S = I (i.e. 0 = 0), then the Ornstein–Uhlenbeck model re-
duces to a Wiener diffusion process.

The feedback matrix 0 contains self feedback coefficients,
γi i = γ are all equal across the diagonals, as well as
symmetrical lateral inhibitory connections γi j = γ j i . The
magnitudes of the lateral inhibitory connections are assumed
to be inversely related to the conceptual distance between the
actions (examples are discussed later). The preference state
vector, P(t), remains bounded as long as the eigenvalues of S
are less than one in magnitude. Lateral inhibition is commonly
used in competitive neural network systems (Grossberg, 1988;
Rumelhart & McClelland, 1986).

The stochastic input vector, V (t), is called the valence, and
each coordinate, V j (t), represents avoidance (when activations
are negative) or approach (when activations are positive) forces
on the preference state for the j th action. The valence vector is
decomposed into three parts as follows:

V (t) = C · M · W (t), (3)
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where C is a J × J contrast matrix, M is a J × K value matrix,
and W (t) is a K × 1 stochastic attention weight vector. Each
element, m jk , of the value matrix M represents the affective
evaluation of each possible consequence k for each action j .
The product of the stochastic attention weight vector with the
value matrix, M ·W (t), produces a weighted average evaluation
for each action at any particular moment. The contrast matrix C
has elements ci j = 1 for i = j and ci j = −1/(J −1) for i 6= j ,
which are designed to compute the advantage or disadvantage
of each action relative to the average of the other actions at each
moment. (Note that

∑
j ci j = 0 implies that

∑
V j (t) = 0.)

The weight vector, W (t), is assumed to fluctuate from
moment to moment, representing changes in attention to the
uncertain states across time. More formally, the attention
weights are assumed to vary according to a stationary stochastic
process with mean E[W (t)] = w · h, and variance–covariance
matrix Cov[W (t)] = Ψ · h.1The mean weight vector, w, is a
K × 1 vector, and each coordinate, wk = E[Wk(t)], represents
the average proportion of time spent attending to a particular
state, Xk , with k ∈ {1, . . . , K }.

2.2. Derivations

These assumptions lead to the following implications. The
mean input valence equals E[V (t)] = δ · h = (C · M · w) · h,
and the variance–covariance matrix of the input valence equals
Cov[V (t)] = Φ · h = (CMΨM′C′) · h. The mean preference
state vector equals

ξ(t) = E[P(t)] =

n−1∑
τ=0

Sτ δ · h + Sn P(0)

= (I − S)−1(I − Sn) · δ · h + Sn P(0). (4)

As t → ∞, ξ(∞) = (I − S)−1
· δ · h so that the mean

preference state is a linear transformation of the mean valence.
The variance–covariance of the preference state vector equals

Ω(t) = Cov[P(t)] = h ·

n−1∑
τ=0

SτΦ(Sτ )′. (5)

For the special case where Φ = φ2
· I, then Ω(t) = h ·φ2

· (I −

S2)−1(I−S2n); and as t → ∞, then Ω(∞) = h ·φ2
·(I−S2)−1.

Finally, if it is assumed that the attention weights change
across time according to an independent and identically
distributed process, then it follows from the central limit
theorem that the distribution for the preference state vector
will converge in time to a multivariate normal distribution with
mean ξ(t) and covariance matrix Ω(t). The derivation for the
choice probabilities depends on the assumed stopping rule for
controlling the decision time, which is described next.

1 Preference is a stochastic process which should converge to a diffusion
process as h → 0. The properties of preference depend upon the valence which
is a random variable because the attention weights are random. In order for
preference to converge to a diffusion process, the mean and variance must be
proportional to h. And because valence is a linear transformation of the weights,
the mean and variance of the weight vector must be proportional to h.
Fig. 1. Representation of the binary decision process in decision field theory.
The decision process begins at the start position z (often z = 0, the neutral
point) and preference is accumulated for either of the two options. The current
level of accumulated preference p is incremented by positive values of valence
v and decremented by negative values. One option is chosen when preference
exceeds the upper bound θ , and the alternate option is chosen when preference
exceeds the lower bound.

Externally controlled stopping task. In this first case, the
stopping time is fixed at time T , and the action with the
maximum preference state at that time is chosen. For a
binary choice, allowing h → 0 produces the following
equation (Busemeyer & Townsend, 1992):

Pr[A1 | {A1, A2}] = F

e−α·T
· z + (1 − e−α·T ) · (δ/α)

σ
√

2·α
·
√

1 − e−2·α·T

 (6)

where F is the standard normal cdf, T is the fixed time, z =

P1(0), δ = limh→0 E[V1(t)]/h =
∑

(m1k − m2k) · wk , σ 2
=

limh→0 Var[V1(t)]/h = φ2
1+φ2

1−2·φ12, and α = (γ11+γ12). If
there is no initial bias, z = 0, then the binary choice probability
is an increasing function of the ratio (δ/σ ). Also as T → ∞,
the binary choice probability is determined solely by the ratio√

2
α

·
(

δ
σ

)
.

Internally controlled stopping task. In this case, rather
than a fixed deliberation time, there is some sufficient level
of preference required to make a choice. The deliberation
process continues until one of the preference states exceeds
this threshold, θ , and the first to exceed the threshold is chosen
(see Fig. 1). For a binary choice, allowing h → 0 produces the
following equation (Busemeyer & Townsend, 1992):

Pr[A1 | {A1, A2}] =

∫ z
−θ

exp
(

α·y2
−2·δ·y
σ 2

)
dy∫ θ

−θ
exp

(
α·y2−2·δ·y

σ 2

)
dy

. (7)

Here z = P1(0) is the initial preference state, θ is the threshold
bound, δ =

∑
(m1k − m2k) · wk , σ 2

= φ2
1 + φ2

1 − 2 · φ12, and
α = (γ11 + γ12). For α < (δ/θ), the binary choice probability
is an increasing function of the ratio (δ/σ ) (see Busemeyer and
Townsend (1992), proposition 2).

3. Connections with neuroscience

According to decision field theory, lateral inhibition is
critical for producing a variety of robust empirical phenomena
(see Section 5.2). The locus of this lateral inhibition may
lie within the basal ganglia, which have been implicated in
decision behaviour through their feedback loops to key cortical
areas (Middleton & Strick, 2001). Moreover, Schultz et al.
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(1995) observed that dopaminergic neurons afferent to the
basal ganglia fire in concert with reliable predictors of reward
(see also Gold (2003), Hollerman and Schultz (1998), and
Schultz (1998, 2002)). Together these findings support the
notion that the basal ganglia have an important function in
decision behaviour.

Knowledge of the basal ganglia architecture should enhance
our understanding of the role of lateral inhibition within
cortico-striatal loops. In particular, we are concerned with two
substructures in the basal ganglia, the globus pallidus internal
segment (GPi) and the striatum. Within the cortico-striatal
loops, axons from the cortex enter into the basal ganglia via
the striatum, which then projects to GPi, which in turn projects
to the thalamus which sends afferent connections to the cortical
area from which it arose, creating a looped circuit of neural
communication (Middleton & Strick, 2001).

The striatum consists of approximately 95% GABAergic
medium spiny neurons (Gerfen & Wilson, 1996). Because
GABA is an inhibitory neurotransmitter, these are inhibitory
neurons. Additionally, these striatal neurons have extensive
local arborization of dendrites and axons, creating a network
of distance dependent laterally inhibited neurons (Wickens,
1997; Wilson & Groves, 1980). Striatal neurons have inhibitory
connections to GPi, the output mechanism of the basal ganglia
complex. GPi consists of tonically active neurons (TANs),
which exert their effects by continuously firing, so as to
relentlessly inhibit post-synaptic neurons in the thalamus; only
by inhibition of inhibitory neurons can neurons cast off the
shackles of TANs. Inhibition of GPi by striatal neurons releases
the thalamus to signal the frontal cortex to engage in the action
preferred by striatal neurons. This process is known as thalamic
disinhibition.

Naturally, when one option appears in isolation, the lack
of lateral inhibition from competing alternatives will enable
it to quickly inhibit corresponding GPi neurons2; however,
multiple competing alternatives arouse lateral inhibition. Much
as the edge detectors in the bipolar cells within the retina
(which also employ distance dependent lateral inhibition) are
tuned to contrasts and thereby enhance differences, these basal
ganglia cells can also be thought of as focusing on contrasts
between alternatives. Thus, the local contrasts between a
dominated alternative are effectively magnified by striatal units,
giving more proximal alternatives an advantage over more
distal options where contrasts are less magnified. The negated
inhibition employed by decision field theory appears to mimic
this magnification of local differences.

On the other hand, it might be reasonable to suggest that the
negated inhibition corresponds with thalamic disinhibition, or
striatal inhibition of GPi (see Busemeyer, Townsend, Diederich,
and Barkan (2005), Vickers and Lee (1998) for related
proposals). While distributed representations of alternatives

2 It is important to note that rarely are we faced with one option in isolation,
as we can seemingly always choose the ‘not’ option, i.e. we can choose to buy
or to not buy; the notion of ‘one option’ is rather artificial. An alternate construal
might arise when the option to choose dominates the ‘not’ option; this may be
what is generally implied when it is said that there is only one option.
via striatal neurons engage in lateral inhibition, they also
send inhibitory connections to tonically active GPi neurons.
As information favouring one alternative begins to weaken,
representative neurons send less lateral and pallidal (i.e. to
the GPi) inhibition. Competitive striatal neurons representing
alternate options are thus less inhibited, enabling them to
increase inhibition of both the weakened alternative and GPi
neurons representing their specific alternative. This might look
very much like the negated inhibition employed by decision
field theory.

4. The bridge

Decision field theory is based on essentially the same
principles as the neural models of sensory-motor decisions
(e.g. Gold and Shadlen (2001, 2002)—preferences accumulate
over time according to a diffusion process. So how does this
kind of model relate to expected utility models? To answer
this question, it is informative to take a closer look at a simple
version of the binary choice model in which S = I (i.e. 0 = 0).
In this case:

P1(t) = P1(t − h) + V1(t) = z +

n−1∑
τ=1

V1(τ · h) (8)

where z = P1(0). Recall that E[V (t)] = h ·C·M ·w = h ·δ, and

for J = 2 alternatives, C =

[
1 −1
−1 1

]
and δ =

[
δ1
δ2

]
=

[
δ

−δ

]
. The

expectation for the first coordinate equals:

E[V1(t)] = δ · h =

(∑
wk · m1k −

∑
wk · m2k

)
· h

= (µ1 − µ2) · h (9)

where wk = E[Wk(t)] is the mean attention weight
corresponding to the state probability, pk , in the classic
expected utility model, µ j =

∑
wk · m jk corresponding to

the expected utility of the j th option, and right hand side of
Eq. (9) corresponds to a difference in expected utility. Thus the
stochastic element, V1(t), can be broken down into two parts: its
expectation plus its stochastic residual, with the latter defined
as ε(t) = V1(t) − δ · h. Inserting these definitions into Eq. (8)
produces

P1(t) = (µ1 − µ2) · t +

(
z +

n−1∑
τ=1

ε(τ · h)

)
. (10)

According to Eq. (10), the preference state is linearly related to
the mean difference in expected utilities plus a noise term.

By comparing Eqs. (8) and (10), one can see that it
is clearly unnecessary to assume that the neural system
actually computes a sum of the products of probabilities and
utilities so as to compute expected utility when choosing
between alternatives; instead, an expected utility estimate
simply emerges from temporal integration. According to this
analysis, neuroeconomists should not be looking for locations
in the brain that combine probabilities with utilities. The key
question to ask is what neural circuit in the brain carries out
this temporal integration.
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Fig. 2. Comparability effects. Four actions (A, B, C , & D) can be taken, and
the payoffs that are obtained depend on whether State 2 or State 2 occurs. If
State 2 occurs, choice A would yield the highest payoff and D would yield the
lowest. If State 1 occurs, D would give the highest payoff whereas C would
provide the lowest. Binary choice comparisons between the available actions
elicit violations of strong stochastic transitivity and order dependence. Unlike
most utility models, decision field theory is able to explain these violations.

5. Gains in explanatory power

Decision field theory, being a dynamic and stochastic
model, seems more complex than the traditional deterministic
and algebraic decision theories. However, it adds explanatory
power that goes beyond the capabilities of traditional
decision theories. Generally, it allows for predictions regarding
deliberation time, strength of preference, response distributions,
and process measures that are not possible with static,
deterministic approaches. More specifically, there are several
important findings which, although puzzling for traditional
decision theories, are directly explained by decision field
theory; some of these are reviewed next.

5.1. Similarity effects on binary choice

Busemeyer and Townsend (1993) survey robust empirical
trends that have challenged utility theories but that are easily
accommodated by applying decision field theory to binary
choices. We consider here one example, illustrated using the
four choice options (actions) shown in Fig. 2. In this example,
assume that there are two equally likely states of the world,
labelled State 1 and State 2. The horizontal axis represents the
payoffs that are realized if State 1 occurs, and the vertical axis
represents the payoffs that are realized if State 2 occurs. For
example, if State 1 occurs, then action D pays a high value and
action B pays a low value; but if State 2 occurs, then B pays a
high value and D pays a low value. Action A has a very small
disadvantage relative to action B if State 1 occurs, but it has a
more noticeable advantage over B if State 2 occurs. Action C
has a noticeable disadvantage relative to B if State 1 occurs, but
it has a very small advantage relative to B if State 2 occurs.

In this type of situation, a series of experiments have
produced the following general pattern of results (see
Busemeyer and Townsend (1993), Erev and Barron (2005)
Mellers and Biagini (1994)). On the one hand, action B seems
clearly better than action C , and so it is almost always chosen
over action C ; on the other hand, action B seems clearly inferior
to action A, and so it almost never chosen over action A. Things
are not so clear when action D is considered, for this case
involves large advantages and disadvantages for D depending
on the state of nature. Consequently, action D is only chosen
a little more than half the time over action C , and action D is
chosen a little less than half the time over action A. Finally,
when given a binary choice between B versus D, people are
equally likely to choose each action. In sum, the following
pattern of results is generally reported:

Pr[B | {B, C}] > Pr[D | {D, C}] ≥ Pr[D | {B, D}]

= .50 ≥ Pr[D | {D, A}] > Pr[B | {B, A}].

This pattern of results violates the choice axioms of strong
stochastic transitivity and order independence (Tversky, 1969).

The pattern is very difficult to explain using a traditional
utility model. The probability of choosing action X over Y is
a function of the expected utilities assigned to each action:

Pr[X | {X, Y }] = F[EU (X), EU (Y )],

with F a strictly increasing function of the first argument, and
a strictly decreasing function of the second.3 Now the first
inequality implies,

Pr[B | {B, C}] = F[EU (B), EU (C)]

> F[EU (D), EU (C)] = Pr[D | {D, C}],

which also implies that EU (B) > EU (D). But the latter in
turn implies

Pr[B | {B, A}] = F[EU (B), EU (A)]

> F[EU (D), EU (A)] = Pr[D | {D, A}],

which is contrary to the observed results. In other words, the
utilities would have to have the reverse order, EU (D) >

EU (B), to account for the second inequality.
Decision field theory provides a simple explanation for this

violation of order independence. For two equally likely states
of nature, attention switches equally often from one state to
another so that w1 = .50 = w2. When given a binary choice
between two actions X and Y , then E[Vx (t)] = δ = (µX −

µY ) = w1 · (m X1 −mY 1)+w2 · (m X2 −mY 2) and Var[Vx (t)] =

σ 2
= w1 · (m X1 − mY 1)

2
+ w2 · (m X2 − mY 2)

2
− (µX − µY )2.

Based on the values shown in Fig. 2, the mean differences for
the four pairs are ordered as follows:

+δ = µB − µC = µD − µC > µB − µD

= 0 > µB − µA = µD − µA = −δ.

This alone does not help explain the pattern of results. The
variances for the four pairs are ordered as follows from high
to low:

σ 2
H = σ 2

DC = σ 2
D A > σ 2

BC = σ 2
B A = σ 2

L .

3 This argument holds even if the utility of an action is computed using
decision weights for the outcomes rather than the objective state probabilities.
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By itself, this also does not explain the pattern. The key point
is that the binary choice probability is an increasing function of
the ratio (δ/σ ), and the ratios reproduce the correct order:

(µB − µC )/σBC = +δ/σL > (µD − µC )/σDC

= +δ/σH > (µD − µB)/σDB

= 0/σL > (µD − µA)/σD A = −δ/σH

> (µB − µA)/σB A = −δ/σL .

In sum, including action D in a pairwise choice produces a
higher variance, making it hard to discriminate the differences;
whereas including option B produces a lower variance, making
it easy to discriminate the differences. In this way, decision field
theory provides a simple explanation for a result that is difficult
to explain by a utility model.

5.2. Context effects on multi-alternative choice

Whereas Busemeyer and Townsend (1993) apply decision
field theory to binary choice situations such as in the previous
section, Roe et al. (2001) show how the same theory can
account for decisions involving multiple alternatives. Choice
behaviour becomes even more perplexing when there are more
than two options in the choice set. A series of experiments have
shown the preference relation between two of the options, say
A and B, can be manipulated by the context provided by adding
a third option to the choice set (see Rieskamp, Busemeyer, and
Mellers (2006), Roe et al. (2001), Wedell (1991)).

The reference point effect (Tversky and Kahneman (1992));
see also Wedell (1991) provides a compelling example. The
basic ideas are illustrated in Fig. 3, where each letter shown
in the figure represents a choice option described by two
conflicting objectives. In this case, option A is very good on
the first objective but poor on the second, whereas option B is
poor on the first objective and high on the second. When given
a binary choice between options A versus B, people tend to be
equally likely to choose either option. (Ignore option C for the
time being).

Option Ra has a small advantage over A on the second
dimension, but a more noticeable disadvantage on the first
dimension. Thus Ra is relatively unattractive compared to
option A. Similarly, option Rb has a small advantage over B
on the first dimension but a more noticeable disadvantage on
the second dimension. Thus option Rb is relatively unattractive
compared to option B.

For the critical condition, individuals are presented with
three options: A, B, and a third option, R, which is used to
manipulate a reference point. Under one condition, participants
are asked to assume that the current option Ra is the status quo
(reference point), and they are then given a choice of keeping
Ra or exchanging this position for either action A or B. Under
these conditions, Ra was rarely chosen, and A was favoured
over B. Under a second condition, participants are asked to
imagine that option Rb is the status quo, and they are then given
a choice of keeping Rb or exchanging this position for either A
or B. Under this condition, Rb was rarely chosen again, but now
B was favoured over A. Thus the preference relation between A
Fig. 3. Context effects can impact decisions. Option A is high on Dimension
1 but low on Dimension 2 whereas B is high on Dimension 2 but low on
Dimension 1. Option C can be thought of as a compromise, and options Ra
and Rb can be used as reference points. Although preference for options A
and B are equivalent in binary choice comparisons, preference for A increases
when Ra is present; likewise, preference for B increases when the choice set
includes A, B, and Rb . This violation of regularity cannot be explained by
heuristic models of choice. When presented with binary comparisons involving
two of A, B, and C , preference for each option is equal. However, when all
three options are simultaneously available, option C emerges as a preferred
alternative, an effect which neither heuristic choice nor classic utility models
can easily explain. Decision field theory can explain each of these effects
without even adjusting its parameters across the conditions (see Roe et al.
(2001) for other related findings).

and B reverses depending on whether the choice is made with
respect to the context provided by the reference point Ra or Rb.

In sum, the following pattern of choice probabilities is
generally found (Tversky and Kahneman (1992); see also
Wedell (1991)):

Pr[A | {A, B, Ra}] > Pr[A | {A, B}]

= .50 > Pr[B | {A, B, Ra}],

Pr[B | {A, B, RB}] > Pr[B | {A, B}]

= .50 > Pr[A | {A, B, Rb}].

According to a traditional utility model, it seems as if option A
is equal in utility to option B under binary choice, but option A
has greater utility than B from the Ra point of view, and option
B has greater utility than A from the Rb point of view.

There is a second and equally important qualitative finding
that occurs with this choice paradigm, which is called the
attraction effect (Heath & Chatterjee, 1995; Huber & Puto,
1983; Huber, Payne, & Puto, 1982; Simonson, 1989). Note
that the choice probability from a set of three options exceeds
that for the subset: Pr[A | {A, B, Ra}] > Pr[A | {A, B}]. It
seems that adding the deficient option Ra makes option A look
better than it appears within the binary choice context. This is a
violation of an axiom of choice called the regularity principle.
Violations of regularity cannot be explained by heuristic choice
models such as Tversky’s (1972) elimination by aspects model
(see Rieskamp et al. (2006), Roe et al. (2001)).

Decision field theory explains these effects through the
lateral inhibition mechanism in the feedback matrix S. Consider
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(I − S2)−1
=

1

det[I − S2]
·

1 + s4
− b2(3 − 2b2) − s2(b2

+ 2) b2(1 + 3s2
− 2b2) −2sb · (1 − s2)

b2(1 + 3s2
− 2b2) 1 + s2

− b2(3 − 2b2) − s2(b2
+ 2) −2sb · (1 − s2)

−2sb · (1 − s2) −2sb · (1 − s2) (1 − s2)(1 − s2
− 2b2)


Box I.
first a choice among options {A, B, Ra}. In this case, B is
very dissimilar to both A and Ra and so the lateral inhibition
connection between these two is very low (say zero for
simplicity); yet A is very similar to Ra and so the lateral
inhibition connection between these two is higher (b > 0).
Allowing rows 1, 2, and 3 to correspond to options A, B, Ra
respectively, then the feedback matrix can be represented as

S =

s 0 −b
0 s 0
−b 0 s

 .

The eigenvalues of S in this case are (s, s −b, s +b), which are
required to be less than unity to maintain stability. In addition,
to account for the binary choices, we set µA = µB = µ, and
µR = −2µ, so that A and B have equal weighted mean values,
and option Ra is clearly inferior. Note that A and B are equally
likely to be chosen in a binary choice, but this no longer follows
in the triadic choice context. For in the latter case, we find that
the mean preference state vector converges asymptotically to:

ξ(∞) = h · (I − S)−1µ

= h ·


(1 − s + 2b)µ

(1 − s − b)(1 − s + b)
µ

1 − s
(−2 + 2s − b)µ

(1 − s − b)(1 − s + b)

 . (11)

The asymptotic difference between the mean preference states
for A and B are obtained by subtracting the first two rows,
which yields:

ξA − ξB = h ·
µ · b(2(1 − s) + b)

(1 − s)(1 − s − b)(1 − s + b)
. (12)

This difference must be positive, producing a choice probability
that favours A over B. As µ increases, the probability of
choosing option Ra goes to zero, while the difference between
options A and B increases, which drives the probability of
choosing option A toward 1.0.

If the reference point is changed from option Ra to option
Rb, then the roles of A and B reverse. The same reasoning
now applies, and the sign of the difference shown in Eq. (12)
reverses. Thus, if the reference point is changed to option Rb,
then option B is chosen more frequently than A, producing a
preference reversal. In sum, decision field theory predicts that
both reference point and attraction effects result from changes
in the mean preference state generated by the lateral inhibitory
connections (see Busemeyer and Johnson (2004), Roe et al.
(2001) for more details.)

Another important example of context effects is the
compromise effect, which involves option C in Fig. 3.
When given a binary choice between options A versus B,
people are equally likely to choose either option. The same
holds for binary choices between options A versus C , and
between B versus C . However, when given a choice among
all three options, then option C becomes the most popular
choice (Simonson, 1989; Tversky & Simonson, 1993). Within
the triadic choice context, option C appears to be a good
compromise between the two extremes.

The compromise effect poses problems for both traditional
utility models as well as simple heuristic choice models.
According to a utility model, the binary choice results imply
equal utility for each of the three options; but the triadic choice
results imply a greater utility for the compromise. According
to a heuristic rule, such as the elimination by aspects rules or
a lexicographic rule, the intermediate option should never be
chosen, and only one of the extreme options should be chosen.

Decision field theory provides a rigorous account of this
effect as well. To account for the binary choices, it must
be assumed that all the mean valences are equal to zero,
E[V (t)] = δ = 0 and thus E[P(t)] = ξ(t) = 0. This
implies that the compromise effect must be explained by the
covariance matrix for the triadic choice, �(t). As seen in Eq.
(5), this covariance matrix is generated by the lateral inhibitory
connections represented by the feedback matrix S. Allowing
rows 1, 2, and 3 to correspond to options A, B, and C from
Fig. 3, respectively, then the feedback matrix for the three
options for the compromise situation is represented by:

S =

s 0 −b
0 s −b
−b −b s

 .

The eigenvalues of this matrix are [s +
√

2 · b, s, s −
√

2 · b].
Suppose, for simplicity, that Φ = h · φ2

· I, where I is the
identity matrix. Then Ω(∞) = h · φ2

· (I − S2)−1, where
see equation in Box I. The important point to note is that
the covariance between the preference states for A and B is
positive, whereas the covariance between preference states for
A and C is negative, and the covariance between preference
states for B and C is also negative. (For example, if s = .95
and b = .03, then the correlation between A and B states
is +.56 and the correlation between A and C states is −.74.)
The valences vary stochastically around zero, but whenever the
preference state for C happens to be strong, then the preference
states for A and B are weak; whereas whenever the preference
state for C happens to be weak, then the preference states
for both A and B are strong. Thus when C happens to be
strong, it has no competitor; but options A and B must share
preference on those occasions when C happens to be weak.
The result is that about half the time C will be chosen, and
the remaining times either A or B will be chosen. Thus this
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Fig. 4. Equal density contours for computing triadic choice probabilities. The
leftmost panel demonstrates the contour for the density function of option A,
where positive values on the horizontal axis indicate preference for option A
over option C and positive values on the vertical axis indicate preference for
option A over B. There is a +.22 correlation in the left panel for a choice of
A, and the same is true for the middle panel (preference for B), but there is
a +.93 correlation shown in the right panel for the choice of C . This figure
demonstrates that when option C is preferred to option A, it is also very likely
to be preferred to option B, allowing it to obtain an inordinately large share of
preference, whereas preference for A over C does not indicate that it will be
preferred over option B.

covariance structure provides option C with an advantage over
A and B.

Fig. 4 illustrates the effect of the covariance structure on the
asymptotic distribution of the differences in preference states
(with s = .95 and b = .03). The panel on the left shows
the equal density contours for [PA(∞) − PC (∞), PA(∞) −

PB(∞)]: the probability that the preference state for A exceeds
that for both B and C is the integral over the positive right
hand quadrant in this figure, which equals .29. The middle
panel illustrates the equal density contours for [PB(∞) −

PC (∞), PB(∞) − PA(∞)]: the probability that the preference
state for B exceeds that for A and C is again .29. Finally, the
right panel shows the equal density contours for [PC (∞) −

PB(∞), PC (∞) − PA(∞)]: the probability that the preference
state for C exceeds that for A and B equals .43. In sum,
decision field theory predicts the compromise effect as a result
of the covariance structure generated by the lateral inhibitory
connections (see Roe et al. (2001), for more details).

5.3. Deliberation time effects on choice

Decisions take time, and the amount of time allocated
to making a decision can change preferences. Decision field
theory has been successful in accounting for a number of
findings concerning the effects of deliberation time on choice
probability (see Busemeyer (1985), Diederich (2003), Dror,
Busemeyer, and Basola (1999)). Busemeyer and Townsend
(1993) discuss the ability of decision field theory to account
for speed–accuracy tradeoffs that are evident in many choice
Fig. 5. Predictions for the attraction effect as a function of deliberation
time. P A2 and P B2 indicate choice probability as a function of deliberation
time for options A and B, respectively (from Fig. 3), in the binary choice
condition whereas P A3 and P B3 demonstrate preference for Options A and
B, respectively, during triadic choice when option Ra is included in the choice
set. Decision field theory predicts that the attraction effect should increase
with deliberation time, an effect empirically demonstrated Dhar et al., 2000;
Simonson, 1989.

situations. That is, in general, choice probabilities are
moderated with decreases in deliberation time.

As an example, consider once again the attraction effect
referred to in Fig. 3: Adding a third option Ra to the choice
set increases the probability of choosing option A. Decision
field theory predicts that increasing the deliberation time
increases the size of the attraction effect. In fact, this prediction
has been confirmed in several experiments (Dhar, Nowlis, &
Sherman, 2000; Simonson, 1989). In other words, thinking
longer actually makes people produce stronger violations of the
regularity axiom.

Eq. (12) represents the asymptote of an effect that is
predicted to grow during deliberation time. The dynamic
predictions of the model were computed assuming an externally
controlled stopping task, with increasing values for the stopping
time T . The predictions were generated using the coordinates
of options A, B, and RA shown in Fig. 3 to define the values,
m jk , for each option on each dimension, wk = .50 for the
mean attention weight allocated to each dimension, si i = .95
for the self feedback, sAR = −.03 for the lateral inhibition
between the similar options A and Ra, sAB = 0 for the
lateral inhibition between the two dissimilar options A and
B, and h = 1. The predicted choice probabilities are plotted
in Fig. 5. The choice probabilities for the binary choice lie
on the .50 line; the probability of choosing option A from
the triadic choice gradually increases from .50 to above .60;
the probability of choosing option B from the triadic choice
gradually decreases from .50 to below .40; and the probability
of choosing option Ra remains at zero. As can be seen in this
figure, the model correctly predicts that the attraction increases
with longer deliberation times.

Decision field theory accounts for not only moderation of
preference strength, but even reversals in preference among op-
tions as a function of deliberation time. Specifically, Diederich
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(2003) found reversals in pairwise choices under time pressure,
and demonstrates the ability of decision field theory to account
for her results. Decision field theory requires an initial bias
(z 6= 0) to produce such reversals, such that the initial pref-
erence favours one alternative whereas the valence differences
tend to favour the other alternative. In this case, it requires time
for the accumulated valences to overcome the initial bias. Al-
ternatively, specific forms of attention switching not discussed
here can be used instead to predict the results (see Diederich
(1997, 2003), for model details). Utility theories, as static ac-
counts of decision making, are not able to make reasoned pre-
dictions regarding the effects of time pressure whatsoever.

5.4. Choosing not to choose

Recently, Busemeyer, Johnson, and Jessup (2006) addressed
a new phenomenon concerning context effects reported by Dhar
and Simonson (2003) that occur when an option to ‘defer
making a decision’ is included in the choice sets. Dhar and
Simonson (2003) found that adding a deferred option had
opposite effects on the attraction and compromise effects—it
increased the attraction effect, and it decreased the compromise
effect.

Busemeyer et al. (2006) showed that decision field theory
is able to account for these new effects using the same model
specifications made for the original compromise and attraction
effects reported earlier. The only additional assumption is that
the option to defer is treated as a new choice option with values
equal to the average of the values for the presented options.
This assumption produced a predicted increase in the attraction
effect (by 10%) that resulted from the deferred option stealing
probability away from the original options in the binary choice
set. At the same time, this assumption produced a predicted
decrease in the compromise effect (by 7%) that resulted from
the deferred option decreasing the advantage of compromise
option over the other two extreme options in the triadic set.

5.5. Preference eeversals between choice and price measures

One important advantage of decision field theory is that
it is not limited to choice-based measures of preference, and
it can also be extended to more complex measures such as
prices. This is important because empirically it has been found
that preference orders can reverse across choice and price
measurements (Lichtenstein and Slovic (1971), see Johnson
and Busemeyer (2005) for a review). The basic finding is that
low-variance gambles are chosen over high-variance gambles
of similar expected value, whereas the high-variance gamble
receives a higher price. Furthermore, researchers have also
found discrepancies between buying and selling prices that
can be large enough to produce preference reversals. Here as
well, the buying price is greater for the low-variance gamble
compared to the high-variance gamble, but the selling prices
produce the opposite rank-order (see Johnson and Busemeyer
(2005), for a review).

Johnson and Busemeyer (2005) propose that reporting a
price for a gamble results from a series of implicit comparisons
between the target gamble and a set of candidate prices. Each
comparison is modelled by an implicit binary comparison
process, where an implicit choice favouring the current
candidate price entails decreasing the candidate price for the
next comparison, and an implicit choice favouring the target
gamble entails increasing the candidate price for the next
comparison. The comparison process continues until a price is
found that is considered equal to the target gamble—that is, a
price which produces indifference (P(t) = 0) when compared
with the target gamble. Johnson and Busemeyer (2005) show
that this model accounts for a collection of response mode
effects that no other theory has been shown to successfully
predict, including both types of preference reversals mentioned
above.

6. Alternate neural network models for complex decisions

Several artificial neural network or connectionist models
have been recently developed for judgment and decision tasks
(Grossberg & Gutowski, 1987; Guo & Holyoak, 2002; Holyoak
& Simon, 1999; Levin & Levine, 1996; Read, Vanman, &
Miller, 1997; Usher & McClelland, 2004). The Grossberg
and Gutowski (1987) model was used to explain preference
reversals between choice and prices (Section 5.5), but it
has never been applied to the phenomena discussed in
Sections 5.1–5.4. The Levin and Levine (1996) model can
account for effects of time pressure on choice (Section 5.3), but
it has not been applied directly to any of the other phenomena
reviewed here. The model by Holyoak and colleagues has
been applied to attraction effects, but it cannot account for
similarity effects for binary choices (Section 5.1), nor can
it account for compromise effects for triadic choices, and it
has not been applied to preference reversals between choice
and prices (Section 5.5). The Read et al. (1997) model was
designed for reasoning rather than preference problems, and so
it is not directly applicable to the phenomena reviewed here.
Finally, the Usher and McClelland (2004) model can account
for similarity effects (Section 5.1), context effects (Section 5.2),
and time pressure effects (Section 5.3), but it has not been
applied to the remaining phenomena. A closer comparison with
the Usher and McClelland (2004) model is presented below.

Usher and McClelland (2004) have recently proposed the
leaky competing accumulator (LCA) model that shares many
assumptions with decision field theory, but departs from this
theory on a few crucial points. This model makes different
assumptions about (a) the dynamics of response activations
(what we call preference states), and (b) the evaluations of
advantages and disadvantages (what we call valences). First,
they use a nonlinear dynamic system that restricts the response
activation to remain positive at all times, whereas we use a
linear dynamical system that permits positive and negative
preference states. The non-negativity restriction was imposed to
be consistent with their interpretation of response activations as
neural firing rates. Second, they adopt Tversky and Kahneman’s
(1991) loss aversion hypothesis so that disadvantages have a
larger impact than advantages. Without the assumption of loss
aversion, their theory is unable to account for the attraction
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and compromise effects discussed in Section 5.2. Furthermore,
no explanation is given regarding the behavioural emergence
of loss aversion from underlying neurophysiology. Third, the
lateral inhibition employed by LCA is not distance dependent.

It is interesting to consider why LCA does not incorporate
distance dependent lateral inhibition. An essential feature of
neural networks is their use of distributed activation patterns
for representations, with similar representations sharing more
activation pattern overlap than dissimilar representations
(Rumelhart & McClelland, 1986). Thus, neural networks
maintain distance dependent activation; consequently, it is only
natural that they would possess distance dependent inhibition
as well. And, as has already been stated, the striatum, a key
substructure in the decision making process, is itself a network
of distance dependent laterally inhibitory neurons. So, distance
dependent inhibition is more neurally plausible than not. As to
why LCA does not incorporate distant dependent inhibition, it
might be due to the notion that, coupled with the inverse S-
shaped value function used to produce loss aversion, the model
would be severely hampered in its ability to account for the
compromise effect.

Usher and McClelland (2004) criticized Roe et al. (2001)
because the latter model allows for both negative as well as
positive preference states, which they argue is inconsistent with
the concept of strictly positive neural activation. Busemeyer
et al. (2005) responded that the zero point of the preference
scale can be interpreted as the baseline rate of activation in
neural model, with negative states representing inhibition below
baseline, and positive activation representing excitation above
baseline. However, Busemeyer et al. (2005) also formulated
a nonlinear version of lateral inhibition with strictly positive
states which is also able to account for the context effects
discussed in Section 5.2 (see Fig. 6). Specifically, they assumed
that:

d Pj (t + h) = si i · Pj (t) + V j −

∑
i 6= j

si j · [Pi (t) − b], (13)

Pj (t + h) = F[Pj (t) + d P j (t + h)], and

F(x) = 0 if x < 0, F(x) = x if x ≥ 0.4 (14)

As shown in Fig. 6, this version of a lateral inhibitory network
still reproduces the attraction effect while only using positive
activation and positive input states.

A final criticism of decision field theory levied by Usher and
McClelland (2004) is that the model utilizes linear dynamics
even though the brain is most certainly a nonlinear system.
As Busemeyer et al. (2005) argued, one reason that decision
field theory has retained linear dynamics is that mathematical
solutions can be obtained for the model. And because
linear dynamics can approximate nonlinear systems, this
increased mathematical tractability comes at a minimal cost.
No mathematical solutions have been derived for the nonlinear
Usher and McClelland (2004) model, and therefore one must
rely on computationally intensive Monte Carlo simulations.

4 Where the usage of F corresponds to that utilized by LCA.
Fig. 6. Choice probabilities as a function of deliberation time (units on time
scale are arbitrary) for options A, B, and Rb from Fig. 3, derived from
a nonlinear implementation of decision field theory that is constrained to
maintain positive activation states. The nonlinear version still reproduces the
attraction effect without appealing to loss aversion.

This issue of tractability becomes extremely important when
trying to scale up models to account for more complex
measures of preference such as prices. Computationally, it
would be very difficult to model such complex process using
brute force simulations.

7. Conclusion

Models of human behaviour exist on a variety of explanatory
levels, tailored to different aspects of behaviour. In the field of
decision making, the most popular models for many decades
have been algebraic utility models developed in economics.
These models may serve as a good first approximation to
macro-level human behaviour, but are severely limited in that
they only attempt to describe decision outcomes. Furthermore,
their static and deterministic nature does not allow them
to account for decision dynamics and response variability,
respectively.

Recently, biologically-inspired models have been developed
that focus on the substrates of overt decision behaviour. These
models capture the dynamics of neural activation that give
rise to simple decisions underlying sensorimotor responses.
Despite growing interest in neuroscience among economists
and decision researchers, these micro-level models have not
yet had a profound impact. Unfortunately, the majority of
neuroscience by decision researchers only studies gross brain
activation during traditional tasks that is then somehow related
to existing aggregate-level models.

Here, we have provided a level of analysis that we
believe shows excellent potential in bridging the gap between
the customary approach of decision researchers and the
contemporary advances in neuroscience. We introduced the
fundamental concepts of modelling decision making via
diffusion processes, based on decision field theory. This
approach models directly the deliberation process that results
in overt choice, in line with neural models and in contrast to
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algebraic utility theories. Decision field theory has also been
applied to ‘higher-order’ cognitive tasks such as multi-attribute,
multi-alternative choice and pricing, as have utility theories (but
not existing neural models of sensorimotor decisions). Thus,
diffusion models such as decision field theory seem to offer the
best of both worlds from a modelling standpoint.

Emergent properties of decision field theory allow it to
explain systematic changes in preference that have challenged
the prevailing utility framework. Examples reviewed here
included applications to changes in the choice set or response
method, and dependencies on deliberation time. Decision field
theory has also been shown to account for a number of other
pervasive idiosyncrasies in human decision behaviour (see
Busemeyer and Johnson (2004)).

Other models in the same class as decision field theory, but
relying on other specific processes, were reviewed as well. Each
of these alternatives has specific advantages and disadvantages,
and they do not always make the same predictions in a given
situation. Further research is needed to discriminate between
these various ‘bridge’ models of decision making. Regardless
of exactly which model is determined to be the most successful
tomorrow, this type of modelling in general delivers superior
theoretical benefits today.

Acknowledgements

This work was supported by National Institute of Mental
Health Cognition and Perception Grant R01 MH068346,
National Institute on Drug Abuse R01 DA14119, and National
Institute of Mental Health Grant T32 MH017146.

References

Ashby, F. G. (2000). A stochastic version of general recognition theory. Journal
of Mathematical Psychology, 44, 310–329.

Birnbaum, M. H., Coffey, G., Mellers, B. A., & Weiss, R. (1992). Utility
measurement: Configural weight theory and the judges point of view.
Journal of Experimental Psychology: Human Perception and Performance,
18, 331–346.

Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1993).
Responses of neurons in macaque MT to stochastic motion signals. Visual
Neuroscience, 10(6), 1157–1169.

Busemeyer, J. R. (1985). Decision making under uncertainty: A comparison of
simple scalability, fixed sample, and sequential sampling models. Journal
of Experimental Psychology, 11, 538–564.

Busemeyer, J. R., & Diederich, A. (2002). Survey of decision field theory.
Mathematical Social Sciences, 43, 345–370.

Busemeyer, J. R., & Johnson, J. G. (2004). Computational models of decision
making. In D. J. Koehler, & N. Harvey (Eds.), Handbook of judgment and
decision making (pp. 133–154). Cambridge, MA: Blackwell.

Busemeyer, J. R., Johnson, J. G., & Jessup, R. K. (2006). Preferences con-
structed from dynamic micro-processing mechanisms. In S. Lichtenstein, &
P. Slovic (Eds.), The construction of preference (pp. 220–234). New York:
Cambridge University Press.

Busemeyer, J. R., & Townsend, J. T. (1992). Fundamental derivations for
decision field theory. Mathematical Social Sciences, 23, 255–282.

Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic-
cognitive approach to decision making in an uncertain environment.
Psychological Review, 100, 432–459.

Busemeyer, J. R., Townsend, J. T., Diederich, A., & Barkan, R. (2005). Contrast
effects or loss aversion? Comment on Usher and McClelland(2004).
Psychological Review, 112(1), 253–255.
Dhar, R., Nowlis, S. M., & Sherman, S. J. (2000). Trying hard or hardly trying:
An analysis of context effects in choice. Journal of Consumer Psychology,
9, 189–200.

Dhar, R., & Simonson, I. (2003). The effect of forced choice on choice. Journal
of Marketing Research, 40, 146–160.

Diederich, A. (1997). Dynamic stochastic models for decision making under
time constraints. Journal of Mathematical Psychology, 41, 260–274.

Diederich, A. (2003). MDFT account of decision making under time pressure.
Psychonomic Bulletin and Review, 10(1), 157–166.

Dror, I. E., Busemeyer, J. R., & Basola, B. (1999). Decision making under time
pressure: An independent test of sequential sampling models. Memory and
Cognition, 27, 713–725.

Erev, I., & Barron, G. (2005). On Adaptation, maximization, and reinforcement
learning among cognitive strategies. Psychological Review, 112(4),
912–931.

Gerfen, C. R., & Wilson, C. J. (1996). The basal ganglia. In L. W. Swanson,
A. Björklund, & T. Hökfelt (Eds.), Integrated systems of the CNS, part III:
Vol. 12. Handbook of chemical neuroanatomy (pp. 371–468). New York:
Elsevier.

Gold, J. I. (2003). Linking reward expectation to behaviour in the basal ganglia.
Trends in Neurosciences, 26(1), 12–14.

Gold, J. I., & Shadlen, M. N. (2000). Representation of a perceptual decision in
developing oculomotor commands. Nature, 404(6776), 390–394.

Gold, J. I., & Shadlen, M. N. (2001). Neural computations that underlie
decisions about sensory stimuli. Trends in Cognitive Sciences, 5(1), 10–16.

Gold, J. I., & Shadlen, M. N. (2002). Banburismus and the brain: Decoding the
relationship between sensory stimuli, decisions, and reward. Neuron, 36(2),
299–308.

Grossberg, S. (1988). Neural networks and natural intelligence. Cambridge,
MA: MIT Press.

Grossberg, S., & Gutowski, W. E. (1987). Neural dynamics of decision
making under risk: Affective balance and cognitive-emotional interactions.
Psychological Review, 94(3), 300–318.

Guo, F. Y., & Holyoak, K. J. (2002) Understanding similarity in choice
behaviour: A connectionist model. In Proceedings of the cognitive science
society meeting.

Heath, T. B., & Chatterjee, S. (1995). Asymmetric decoy effects on lower-
quality versus higher-quality brands: Meta analytic and experimental
evidence. Journal of Consumer Research, 22, 268–284.

Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in
the temporal prediction of reward during learning. Nature Neuroscience,
1(4), 304–309.

Holyoak, K. J., & Simon, D. (1999). Bidirectional reasoning in decision making
by constraint satisfaction. Journal of Experimental Psychology: General,
128(1), 3–31.

Huber, J., & Puto, C. (1983). Market boundaries and product choice: Illustrating
attraction and substitution effects. Journal of Consumer Research, 10(1),
31–44.

Huber, J., Payne, J. W., & Puto, C. (1982). Adding asymmetrically dominated
alternatives: Violations of regularity and the similarity hypothesis. Journal
of Consumer Research, 9(1), 90–98.

Johnson, J. G., & Busemeyer, J. R. (2005). A dynamic, stochastic,
computational model of preference reversal phenomena. Psychological
Review, 112, 841–861.

Laming, D. R. (1968). Information theory of choice-reaction times. New York:
Academic Press.

Levin, S. J., & Levine, D. S. (1996). Multiattribute decision making in context:
A dynamic neural network methodology. Cognitive Science, 20, 271–299.

Lichtenstein, S., & Slovic, P. (1971). Reversals of preference between bids and
choices in gambling decisions. Journal of Experimental Psychology, 89,
46–55.

Link, S. W., & Heath, R. A. (1975). A sequential theory of psychological
discrimintation. Psychometrika, 40, 77–111.

Mazurek, M. E., Roitman, J. D., Ditterich, J., & Shadlen, M. N. (2003). A
role for neural integrators in perceptual decision making. Cerebral Cortex,
13(11), 1257–1269.

Mellers, B. A., & Biagini, K. (1994). Similarity and choice. Psychological
Review, 101, 505–518.



1058 J.R. Busemeyer et al. / Neural Networks 19 (2006) 1047–1058
Middleton, F. A., & Strick, P. L. (2001). A revised neuroanatomy of frontal-
subcortical circuits. In D. G. Lichter, & J. L. Cummings (Eds.), Frontal-
subcortical circuits in psychiatric and neurological disorders (pp. 44–55).
New York: Guilford Press.

Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk
model of speeded classification. Psychological Review, 104, 226–300.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85,
59–108.

Ratcliff, R., Cherian, A., & Segraves, M. (2003). A comparison of macaque
behaviour and superior colliculus neuronal activity to predictions from
models of two-choice decisions. Journal of Neurophysiology, 90(3),
1392–1407.

Read, S. J., Vanman, E. J., & Miller, L. C. (1997). Connectionism, parallel
constraint satisfaction and gestalt principles: (Re)introducting cognitive
dynamics to social psychology. Personality and Social Psychology Review,
1, 26–53.

Rieskamp, J., Busemeyer, J. R., & Mellers, B. A. (2006). Extending the bounds
of rationality: Evidence and theories of preferential choice. Journal of
Economic Literature, 44, 631–661.

Roe, R. M., Busemeyer, J. R., & Townsend, J. T. (2001). Multi-alternative
decision field theory: A dynamic connectionist model of decision-making.
Psychological Review, 108, 370–392.

Rumelhart, D., & McClelland, J. L. (1986). Parallel distributed processing:
Explorations in the microstructure of cognition. Cambridge, MA: MIT
Press.

Savage, L. J. (1954). Foundations of statistics. Oxford: Wiley.
Schall, J. D. (2003). Neural correlates of decision processes: Neural and mental

chronometry. Current Opinion in Neurobiology, 13(2), 182–186.
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of

Neurophysiology, 80(1), 1–27.
Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2),

241–263.
Schultz, W., Romo, R., Ljungberg, T., Mirenowicz, J., Hollerman, J. R., &

Dickinson, A. (1995). Reward-related signals carried by dopamine neurons.
In J. C. Houk, J. L. Davis, & D. G. Beiser (Eds.), Models of information
processing in the basal ganglia (pp. 233–248). Cambridge, MA:
MIT Press.
Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual
decision in the parietal cortex (area LIP) of the rhesus monkey. Journal
of Neurophysiology, 86(4), 1916–1936.

Simonson, I. (1989). Choice based on reasons: The case of attraction and
compromise effects. Journal of Consumer Research, 16, 158–174.

Smith, P. L. (1995). Psychophysically principled models of visual simple
reaction time. Psychological Review, 102(3), 567–593.

Smith, P. L., & Ratcliff, R. (2004). Psychology and neurobiology of simple
decisions. Trends in Neurosciences, 27(3), 161–168.

Tversky, A. (1969). Intransitivity of preferences. Psychological Review, 76,
31–48.

Tversky, A. (1972). Elimination by aspects: A theory of choice. Psychological
Review, 79, 281–299.

Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative
representations of uncertainty. Journal of Risk and Uncertainty, 5, 297–323.

Tversky, A., & Simonson, I. (1993). Context dependent preferences.
Management Science, 39, 1179–1189.

Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice:
The leaky, competing accumulator model. Psychological Review, 108(3),
550–592.

Usher, M., & McClelland, J. L. (2004). Loss aversion and inhibition
in dynamical models of multialternative choice. Psychological Review,
111(3), 757–769.

Vickers, D., & Lee, M. D. (1998). Dynamic models of simple judgments: I.
Properties of a self-regulating accumulator module. Nonlinear Dynamics,
Psychology, & Life Sciences, 2(3), 169–194.

von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic
behaviour. Princeton, NJ: Princeton Univ. Press.

Wedell, D. H. (1991). Distinguishing among models of contextually induced
preference reversals. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 17(4), 767–778.

Wickens, J. (1997). Basal ganglia: Structure and computations. Network:
Computation in Neural Systems, 8, R77–R109.

Wilson, C. J., & Groves, P. M. (1980). Fine structure and synaptic connections
of the common spiny neuron of the rat neostriatum: A study employing
intracellular inject of horseradish peroxidase. Journal of Comparative
Neurology, 194(3), 599–615.


	Building bridges between neural models and complex decision making behaviour
	Risky decisions with multiple objectives
	Decision field theory
	Basic assumptions
	Derivations

	Connections with neuroscience
	The bridge
	Gains in explanatory power
	Similarity effects on binary choice
	Context effects on multi-alternative choice
	Deliberation time effects on choice
	Choosing not to choose
	Preference eeversals between choice and price measures

	Alternate neural network models for complex decisions
	Conclusion
	Acknowledgements
	References


